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Chapter 1

Introduction

Search and Rescue (SAR) operations require fast, organized, and knowledgable search teams in 

order to safely locate the lost subject and remove the subject from harm's way. Each search case is 

unique, requiring meticulous investigation and preparation, and search teams should be aware of the 

current search strategies and be able to apply these strategies when they are applicable.  Research 

related to SAR began after World War II, primarily for locating enemy submarines (Koopman, 1956, 

1957) . Later research modified these early search methods for use in land-based SAR scenarios 

(Mattson, R. J., 1975; Stone, 1975; Cooper, Frost, and Robe, 2003; O'Connor, 2004). Land-based 

scenarios are more complex than ocean and air cases because both the geography of the terrain and the 

behavior of the lost subject directly influence the subject's possible locations.  Modern search methods 

involve the analysis of lost person behaviors (Syrotuck, 1977; Koester, 2008) as well as a complex 

system of probability assignments (Bownds et al, 1991).  More recently, data from historical SAR cases 

have become more available and this has motivated further research (Koester, 2008).  

While a portion of the current and past research focuses on search team organization (sweep 

methods, effort allocation, etc.), our research aims specifically at determining which areas are most  

likely to contain the lost subject and constructing probability areas for use by search teams. Since 

search resources are limited and efficiency is critical, determining these areas is crucial in the search  

planning process (Stone, 1975). Our methods use a lost person simulation, which is described in 

Chapter 2. 
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Chapter 2 

Lost Person Simulation

The behavior of a lost subject is dictated by a range of inter-related factors; both the terrain of 

the region and the phycological status of the subject (inferred from witnesses, family members, and 

physical evidence) have powerful and varying effects on the true path of the subject. In order to 

account for these factors, we have created a probability-based lost person simulation. The foundation of 

the simulation is within a series of decision points, during which the subject chooses a move through an 

eight-cell sampling process (see Figure 1).  A walk is defined as sequence of moves, with each move 

beginning with a decision and ending with the subject moving to the chosen destination. At each 

decision point, the subject can either rest (no motion) or move (to one of the eight neighboring cells).  

Within each move decision, each potential move will be referred to as a move option ( i ). 

The lost person simulation was implemented using GIS (Geographic Information Systems) 

Python scripting. The visual capabilities and spatial processing functions of GIS make it a useful tool 

for SAR applications. This version of the model includes a sequential set of functions which contribute 

values to the final move sampling. In describing the model, we will refer directly to these functions.
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Figure 1: Eight-cell move diagram. This diagram represents an example decision point, showing the eight 
possible move options. 



2.1 Point Last Seen

Every search begins with a Point Last Seen (PLS). The PLS is the most recent confirmed 

location of the subject. Witnesses, a note from the subject, or other ancillary information may 

contribute to deciding upon a PLS. In the lost person simulation, all walks begin from the PLS. 

2.2 Point of Interest

The point of interest (POI) models a travel tendency of the subject towards a goal location. The 

POI can either be a physical location towards which the subject wants to travel, or a phycological 

tendency (e.g. through a valley, towards the mountain). The difficulty in deciding upon a POI is 

threefold: (1) The subject may have not provided information regarding a goal location (therefore not 

requiring a POI). (2) The intentions and travel tendencies may change throughout the search. (3)  The 

subject is likely to not have a correct inclination of the true location of the POI. This third factor is  

likely considering the subject is lost and disoriented. The reason for including a POI is to model the 

subject's preference in traveling, and it should only be used if there is evidence of a phycological travel 

bias (i.e. not directly influenced by the terrain). 

The accuracy of the subject's perception of the POI is modeled with a width parameter ө, 

measured in compass degrees.  ө is centered on the true compass bearing from the current location of 

the subject towards the true location of the POI. The perceived direction is sampled from a uniform 

distribution within this compass region (see Figure 2). Large values of ө denote large errors in the 

subject's sense of direction, and small values of ө denote an accurate understanding of the POI's 

location (see Figure 3). 
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Figure 2: POI direction sampling. Sampling within a cone of width = ɵ produces the subject's perceived direction of the 
POI (shown here as POI Vector (v)).



The influence of the POI Vector is quantified through a dot product calculation.  For each move 

option, the dot product is computed between the cell move vector (u) and the POI Vector (v).  The dot 

product quantifies the alignment of each move option with the POI Vector (e.g. if v is aligned with u , 

the value of the dot product is 1. If v is in the opposite direction of the u, the value of the dot product is 

-1). The final probability calculations (described later in Section 2.6) use these dot product values for 

each move option. 

2.3 Coordinates, Distance, and Elevation Gain

The first calculation of every decision point is to get the coordinates and distances of the eight 

neighboring cells (North, Northeast, East, Southeast, South, Southwest, West, and Northwest). The 

Check Around function gathers the move option coordinates and distances by adding and/or subtracting 

the cell size from the subject's current location. On any given move, the subject can move from a 

certain location in the current cell to that same location in any of the eight neighboring cells. The  

distances of each move is defined as the raster cell size, the raster being the local digital elevation 

model (DEM).

While a move from the current cell to a diagonal cell (i.e. Northeast, Southeast, Southwest, or 
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Figure 3: Effect of ɵ on endpoint distribution (n = 1000, Stop Time = 5000 s (~ 1 hr 23 mins) ,  Long = .00001, Short = .

0001, Clockr:1/2  = 14400 s (4 hrs) , P0   = .01, η = 0, γ = 20,  Trest / Walk Clock = .25, VT / VF  = 2).



Northwest) is longer than a move directly horizontal or vertical (i.e.  North, East, South, or West), the 

travel distances are all defined as the cell size. Keeping these distances uniform removes bias against  

the diagonal moves, since the longer distances would lead to longer time values for these moves. This 

exception is only applicable for the move sampling - the true move coordinates are used when the 

subject executes the move.

The Check Gain function gathers the elevation of each move option and then computes the 

elevation gains. 

2.4 Travel Pace

Using the elevation gain values, the Check Pace function returns the fresh travel pace for each 

move option. The fresh travel paces VF   are listed below for each elevation gain range. We have 

estimated these paces using Naismith's Rule -  allow 1 hour for every 3 miles forward, and an 

additional 1 hr for every 2000 ft of ascent. We have also simplified this rule and assumed a single value 

for flat, uphill, and downhill travel (Naismith, 1892).

Gain  >  0 m  (uphill move):  VF (Up)     =  0.335 m/s

Gain  =  0 m  (flat move):   VF (Flat)   =  0.670 m/s

Gain  <  0 m  (downhill move):  VF (Down) =  1.340 m/s 

(1) Travel Aids: Trails, or other features that promote easier travel (i.e. roads, fields, etc.), are 

defined as travel aids.  If the lost subject approaches a trail, it is likely for the subject to travel on the 

trail rather than continue through the wilderness. A Check Trail function checks each move option for a 

nearby travel aid. If a move option utilizes a travel aid, an “on trail” pace is calculated as a multiple of 

the fresh pace (i.e. VT = 2VF ). This relationship should be defined by the search planner based upon the 

terrain and the subject. 
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(2) Long Fatigue: To model the decreasing pace of the subject over the whole duration of the 

walk, the Long Fatigue function decreases the fresh pace after each rest period. The parameter Long 

controls this relationship.

V L i
=V F i

∗ exp (−Long ∗ Clock ) (1)

VF i  = Fresh travel pace

VL i = Pace after long fatigue

Clock  = Duration of walk

Long  =  Long-term fitness of subject

(3) Short Fatigue: To model the decreasing pace of the subject between rest stops (i.e. within 

each walk segment), the Short Fatigue function decreases the initial pace of the walk segment (VL i) as 

the subject travels away from the rest stop. The parameter Short dictates this relationship.

 

V Si
=V Li

∗ exp (−Short ∗ Walk Clock ) (2)

VLi = Travel pace after long fatigue

VSi = Travel pace after short fatigue

Walk Clock = Time since last rest stop

Short = Short-term fitness of subject

We have chosen to use the above fatigue equations based upon the assumed tendencies of a lost 

person (i.e. the faster the subject travels, the more rapid the subject fatigues). This is applicable in both 

short and long-term fatigue. This logic is more clearly expressed in the differential equation shown in 

Equation 3 below; both fatigue functions are solutions to this equation. 

dv /dt= − Short ∗ V (3)
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2.5 Time and Probability

The final step before calculating the move probabilities is determining the time values for each 

move option. Using the travel pace (VS i ) and the terrain distance (calculated using the sampling 

distance and the elevation gain), the Check Time function returns the time values for each move option.

 

(1) Probability of Move Options:  From the time values calculated above and the POI Vector 

(described in Section 2.2 Point of Interest), the Check Probabilities function calculates the probability 

of each move option. Here, the two parameters γ and η balance the influence of the POI Vector (v) with 

the time values for each move option (t i).  γ models the desire of the subject to follow his/her 

perception of the POI, while η  models the influence of the time-related factors (terrain, fatigue, travel 

aids). Figure 4 demonstrates the effects of both  η and  γ.

Pmovei
= exp (−η t i + γ(v⋅ui)) (4)

η = Subject's sensitivity to time

γ = Subject's desire to follow POI inclination

u i = Cell move vector

v = POI Vector

t i = Time of move option
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(2) Probability of Resting: An additional option during each decision point is to rest. It is 

assumed that as the subject becomes tired, the probability of resting increases. The probability of 

resting during a decision point is described in Equation 5 below:

P rest = exp((r∗Clock ) + ro) / 1 + exp ((r∗Clock ) + r0) (5)

r0 = Calculated in Equation 6

r = Calculated in Equation 7

Clock = Total walk time

r0=log (P0 / 1−P0) (6)

r= −r o / Clock r :1/ 2 (7)

Equations 6 and 7 require the parameters P0 and r.  P0 is the probability of resting when Clock = 

0 (i.e. at the beginning of the walk). This value can be changed according to the fitness and 

phycological state of the subject, but it could also reflect the immediate health of the subject (e.g. an  

injury requiring more frequent rests). Additionally, a value of r must be estimated by inferring at what 
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Figure 4: The effect of γ and η on endpoint distribution (n = 1000, Stop Time = 5000 s (~ 1 hr 23 mins) ,  Long = .00001, 

Short = .0001, Clock r:1/2  = 14400 s (4 hrs) , P0   = .01, ɵ = 90º,  Trest / Walk Clock = .25,  VT / VF  = 2)



point during the walk (Clock r:1/2) is Prest = .50.  Although this may be a difficult parameter to assess, it is 

important to estimate a value for each scenario - a determined and athletic runner may avoid resting for  

extremely long periods of time due both to fitness and attitude, while an un-fit, casual walker may tend 

to rest after short periods of activity. 

Duration of Rest: The time spent resting must also be determined for each rest stop. It is 

assumed that the subject rests for a fraction of the time spent traveling since the pervious rest stop 

(Trest / Walk Clock). If necessary, search planners can change this proportion to reflect the subject's 

fitness (similar to the fatigue parameters Long and Short). A fit and determined subject is likely to 

spend shorter periods of time resting than an unfit subject. 
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Figure 5: Sample walk showing increased frequency of rest stops over the length of walk (n = 1, Stop Time = 12000 s (3 hrs 

20 mins),  Long = .00001, Short = .0001, Clock r:1/2  = 6000 s (1 hr 40 mins) , P0   = .05,  η = 20, γ =0, ɵ = 180º,  Trest / 
Walk Clock = .25,  VT / VF  = 2).



2.6  Move Sampling

The sampling procedure is divided into two parts: (1) Sampling a move type (rest or move). (2) 

If the decision is to move, sampling a move option. The probability of resting (Prest , calculated from 

Equation 5) and the probability of moving (1 – Prest) are sampled with these weights. If the result is the 

choice to rest, the subject rests; if the choice is to move, the eight move options are sampled with their  

associated probabilities (Pmove i   – for each move option as calculated in Equation 4). Prior to sampling, 

all probabilities are normalized. Once a move is chosen, the subject executes the move and the process 

is repeated. 

2.7 Duration of Walk

Each walk continues until the Clock equals the Stop Time. The Stop Time is the total time of the 

simulation, and in some cases may be the time associated with the PLS (i.e. estimated time of travel  

from the PLS). For example, search planners could receive a information that the subject was at a 

certain trail junction at a specific time. Here, the total time since the subject was confirmed to be at the  

trail junction could be used as the Stop Time. Other situations may merit different uses of the Stop Time 

value, specifically if the PLS does not have an associated time or if multiple scenarios are modeled for 

a single search case.  Additionally, the Stop Time helps in determining the probability areas (described 

later in Chapter 3), especially when multiple sets of areas are constructed throughout the search 

process. As the search continues, the Stop Time increases.
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Chapter 3 

Applications

SAR-related research is only useful if the results and methods can be applied in the field.   The 

tools used by search teams must be effective and easy to interpret in a fast-paced search environment. 

GIS has enabled us to present the results of this simulation in simple and clear ways.  Referring back to 

the initial intentions of using GIS, the capabilities of GIS proved to be very valuable in this research. 

The goal in viewing the results of this simulation is to identify the areas most likely to contain 

the lost subject. One possible way to do this is to construct probability areas as convex hulls containing 

the points closest to the median point away from the PLS (see Figure 6). The probability of each zone 

is defined by the proportion of points within each convex hull (i.e. the 25% convex hull contains at 

least .25 * n (the number of iterations) points. These methods have been derived from the probability 

plots created by William G. Syrotuck in his book Analysis of Lost Person Behavior: An Aid to Search  

Planning (Syrotuck, 1977). However, the results of our simulation and the capabilities of GIS have 

allowed us to construct these areas over a spatial scale, rather than a linear scale.  In Figure 6, we have 

also collapsed the probability areas into a linear scale to show this type of representation. Whether 

viewing probability maps or linear distance scales, it is important to interpret these results in relation to  

the larger search scenario. It is not enough to base the search on these plots alone, but to use them as a 

tool to understand the relationship between the terrain and the subject’s behavior. 
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Figure 6: Example probability areas with linear distance from PLS plot (n = 5000, Stop Time = 8000 (~ 2 hrs 13 mins), 

Long = .00001, Short = .0001, Clock r:1/2  = 14400 s (4 hrs), P0   = .01,  η = 0, γ =0, ɵ = 360º,  Trest / Walk Clock = .25,  
VT / VF  = 2).



Chapter 4

Discussion

The goal of this research is to design and implement a realistic and simple lost person 

simulation. Other types of empirical models, such as those which are based purely on SAR data (PLS 

and find location data points), attempt to model these scenarios without considering the individual  

travel decisions of the subject.  Moreover, many of the current methods in SAR use expert consensus 

evaluations to determine search areas as well as phycological profiles of lost person behavior. While 

these methods are useful, they do not model the individual move decisions of the subject.  The structure 

of our model is similar to that of the decision making environment of a lost subject.  It is this realism 

for which we have designed this model. This has also required us to simplify the model and only 

include those variables which are most relevant in the decision making process. It has been our goal to 

maintain a balance between realism and simplicity. 

This model requires extensive parameterization, considering the large number of parameters. 

However, the resolution of the data required to parameterize this model cannot be found in the current 

SAR datasets.  Data does not exist for the individual decision points of the lost subject, but rather only 

for the initial PLS location and the find location. Until we can find this resolution of data, we must use 

other applicable methods to parameterize the model. One potential method is to use the probability  

areas as a calibration tool. This would require a series of tests in which the parameters would be 

changed until the 95% probability area contained the actual find location. This process would then be 

repeated sequentially for each probability area (75%, 50%, and 25%).  Other methods, such as a 10-

fold cross validation, could be used for parameterization. It would also be important to create Subject  

Profiles, allowing search teams to quickly set the parameters for each subject.  Lastly, it will be 

necessary to complete a thorough validation of this model. Charles Twardy, a pioneer of SAR research, 
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has designed a lost person simulation validation system and it may be possible to run a complete 

validation using this tool. This method will enable us to compare the simulation results with a large 

database of SAR data. 

Human behavior is very unpredictable and modeling it is often an impossible task. This research 

will require many more hours of work - tweaking parameters, validating results, and continually adding 

and subtracting behavioral factors. However, it is not a single quantifiable validation for which is the 

goal. The ultimate benefit from this type of modeling is in the continuous testing and investigation 

which leads to a better understanding of the true nature of lost persons. Potential influences are thrown 

away and new influences surface, but only those which withstand validation and testing will remain 

relevant and our overall understanding of these issues will progress. 
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Appendix A

Parameters
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              Variable Parameters

Parameter Description

η

γ

Long

Short

θ 

ɵ determines the width of the POI sampling range in compass 
degrees. The sampling “cone” is defined as [POI bearing – θ/2, 
POI bearing + θ/2]. Large θ values indicate a lower accuracy in 

the subject's perception of the POI location, and smaller θ 
values indicate a  higher accuracy in the subject's perception of 

the POI location.

η determines the sensitivity of time (i.e. the travel duration of 
each move option) in the probability calculations.

γ determines the POI sensitivity in the probability calculations.  
If the subject is determined to follow his/her inclination of the 

POI (independent of its accuracy), γ should be large. If the 
subject chooses to ignore the POI, the value of γ should be 

small. If there is no POI, γ = 0.

The Long variable is a fitness parameter to model the subject's 
fatigue over the entire duration of the walk. High values of 

Long model low fitness, while low values of Long model high 
fitness. 

The Short variable is a fitness parameter to model the subject's 
fatigue between rests. High values of Short model low fitness, 

while low values of Short model high fitness. 
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                 Fixed Parameters
Parameter Description

P
0

Probability of resting when Clock  =  0 (i.e. at the start of the 
simulation). This value has been set to .005 or .01, depending 

on the testing scenario. 

Clock
 r : ½

Clock time when the P
0
 = .50. This value has been to 1440 

seconds (4 hours). 

V
F (Up)

The fresh travel pace when gain > 0. Using an estimate from 
the Naismith's Rule, this value has been set to 0.335 m/s

V
F (Down)

 The fresh travel pace when gain < 0. Using an estimate from 
the Naismith's Rule, this value has been set to 1.34 m/s. 

V
F (Flat)

The fresh travel pace when gain < 0. Using an estimate from 
the Naismith's Rule, this value has been set to 0.67 m/s. 

T
Rest

 /
 
Walk Clock

The fraction of time spent resting after each walk segment.  A 
value of .5 means that the subject rests for one half of the time 

for which he/she had previously traveled since the last rest 
point.  This value has been set to .25.

V 
T   

/  V
F

The travel pace on a travel aid (e.g. trail) compared to the fresh 
travel pace. This value has been set to 2 (i.e. the subject travels 

twice as fast via a trail compared to the fresh travel pace). 



We have organized the parameters into two categories: fixed and variable. The fixed parameters 

are very important when running the model, but serve as “backend” environment variables. Efforts 

should be focused on making reasonable assignments of the variable parameters, before changing the 

values of the fixed parameters. The variable parameters should be used as the primary parameters when 

running the model, and reflect both the fitness of the subject and the subject's phycological state. 

Future parameterization will allow us to have a better understanding of these parameters and of their 

respective domains. 
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